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1
SYSTEM AND METHOD FOR
MULTIPLE-INPUT MULTIPLE-OUTPUT
COMMUNICATION

This application claims the benefit of U.S. Provisional
Application No. 61/991,399, filed on May 9, 2014, entitled
“The Ergodic High SNR Capacity of the Kronecker Spa-
tially-Correlated Non-Coherent MIMO Channel Within an
SNR-Independent Gap,” which application is hereby incor-
porated herein by reference.

TECHNICAL FIELD

The present invention relates to a system and method for
wireless communication and in particular embodiments
relates to a system and method for multiple-input multiple-
output communication.

BACKGROUND

Multiple-input multiple-output (MIMO) communication
systems provide a spectrally-efficient means for communi-
cating over wireless channels. Such systems can be classi-
fied into coherent systems in which the receiver has access
to reliable channel state information (CSI) and non-coherent
systems in which this information is not available at either
the transmitter or the receiver. Coherent systems are more
straightforward to design than their non-coherent counter-
parts. However, the analysis of coherent systems usually
does not account for the cost of the resources that have to be
expended to acquire reliable CSI. Ignoring this cost in static
and slow fading scenarios is generally tolerable. Ignoring it
in fast fading scenarios, which arise in wireless systems with
high mobility, can be rather misleading. A mobile device that
is traveling at 60 miles per hour has a fading coherence of
about 3 ms. If the mobile system is operated at 1.9 GHz and
has a symbol rate of 30K symbols per second, 3 ms allows
for 50-100 symbol periods. If several training symbols per
antenna are needed, only a few antennas may be trained
during a fading coherence period.

In order to alleviate the cost of acquiring reliable CSI in
fast fading scenarios, it is often believed to be desirable to
use non-coherent signaling strategies, that is, strategies that
do not require the receiver to have access to CSI. It has been
shown that, for spatially-white MIMO channels with inde-
pendent identically distributed (i.i.d.) block Rayleigh fading
coeflicients, input matrices that achieve the ergodic capacity
can be expressed in the form of an isotropically distributed
unitary component and a diagonal component with non-
negative entries (Hochwald and Marzetta, “Unitary space-
time modulation multiple-antenna communications in Ray-
leigh flat fading,” IEEE Trans. Inf. Theory, vol. 46, pp.
543-564, March 2000, which is hereby incorporated herein
in its entirety by reference). A closed form expression for the
asymptotically high signal-to-noise ratio (SNR) ergodic
capacity of this type of channel has been determined for the
cases where the coherence time of the channel exceeds and
is below a certain threshold. When the coherence time of the
channel exceeds the threshold, it was shown that, for suffi-
ciently high SNRs, it is optimal, from a capacity perspective,
for the diagonal component to be a scaled identity matrix
and for the unitary matrix to be isotropically distributed on
the so-called Grassmann manifold and to have the number of
antennas transmitting less than or equal to half the number
of' symbol durations spanned by the coherence interval of the
channel. Various techniques for designing rate-efficient
Grassmannian constellations have been shown (L. Zheng
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and D. N. C. Tse, “Communication on the Grassmann
manifold: A geometric approach to the noncoherent mul-
tiple-antenna channel,” IEEE Trans. Inf. Theory, vol. 48, pp.
359-383, February 2002, which is hereby incorporated
herein in its entirety by reference). For the case where the
SNR is below the threshold, the unitary component was
shown to have the same distribution as when above the
threshold, but the optimal distribution for the diagonal
component was shown to be that of the square root of the
eigenvalues of a beta-distributed random matrix. In contrast
with the high SNR cases, for low SNRs, it has been shown
that the optimal diagonal component has at most one non-
zero entry at any given time.

The proximity of antennas to each other in practical
wireless systems renders the realization of spatially-white
channels generally difficult, even when the distance between
antennas exceeds multiple wavelengths. This proximity
induces correlation between the random entries of the chan-
nel matrix at the transmitter and receiver sides. A convenient
means for characterizing this correlation mathematically is
the so-called Kronecker model, whereby the spatially-cor-
related channel matrix is represented by left and right
multiplication of a spatially-white channel matrix with trans-
mitter and receiver covariance matrices, respectively. For-
tunately, these matrices are dominated by the locations,
geometries and beam patterns of the antennas at the receiver
and the transmitter. Being characteristic of the wireless
devices on which the antennas are mounted, these matrices
can be accurately estimated and made available to the
transmitter and the receiver. The impact of these matrices on
the proper signaling methodology and the achievable rate
can be quite significant. For the case in which the correlation
between the channel coefficients is described by the Kro-
necker model, it has been shown that for spatially white
channels, increasing the number of transmit antennas is
almost surely beneficial. It has also been shown that the
optimal input covariance can be expressed as the product of
an isotropically distributed unitary component, a diagonal
component with non-negative entries and a deterministic
component comprising the eigenvectors of the transmitter
covariance matrix.

SUMMARY

An embodiment of the disclosure is a communication
system including a plurality of antennas. A precoder is
included to combine data to be transmitted with a coding
matrix to form transmission symbols. The coding matrix is
formed by combining a Grassmannian matrix comprising a
distribution on a Grassmannian manifold with a function of
a transmitter covariance matrix. A transmitter is connected
to the plurality of antennas and is configured to transmit the
transmission symbols.

The coding matrix may be formed according to the
formula

X=0, DU
where, Q, is an isotropically distributed unitary matrix; D is
a random diagonal matrix with non-negative entries; and U ,
is a matrix containing the eigenvectors of the transmitter
covariance matrix, in this case the 1 indicates that it is the
conjugate transpose of that matrix. The random diagonal
matrix may be determined according to the formula

o [P e
Tr/\;l A
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where, T is the coherence time, P is the transmit power, Tr
is the trace function; and A, is a matrix composed of the
eigenvalues of the transmitter covariance matrix.

Another embodiment is a communication system includ-
ing a base station with a plurality of antennas configured to
transmit to a plurality of mobile receivers. The base station
includes a precoder that combines data to be transmitted
with a coding matrix to produce transmission symbols. The
coding matrix is formed by combining a Grassmannian
matrix comprising a distribution on a Grassmannian mani-
fold with a function of a transmitter covariance matrix. A
transmitter connected to the plurality of antennas and con-
figured to transmit the transmission symbols.

The coding matrix may be formed according to the
formula

X=0, DU
where, Q, is an isotropically distributed unitary matrix; D is
a random diagonal matrix with non-negative entries; and U,
is a matrix containing the eigenvectors of the transmitter
covariance matrix, in this case the 1 indicates that it is the
conjugate transpose of that matrix. The random diagonal
matrix may be determined according to the formula

e [_TP A2
TrAG!

where, T is the coherence time, P is the transmit power, Tr
is the trace function; and A, is the eigenvalues of the
transmitter covariance matrix.

Another embodiment is a communication method includ-
ing combining data to be transmitted wirelessly using a
plurality of antennas with a coding matrix formed by com-
bining a Grassmannian matrix comprising a distribution on
a Grassmannian manifold with a transmitter covariance
matrix to produce transmission symbols, and then transmit-
ting the transmission symbols.

The coding matrix may be formed according to the
formula

X=0, DU
where, Q, is an isotropically distributed unitary matrix; D is
a random diagonal matrix with non-negative entries; and U,
is a matrix containing the eigenvectors of the transmitter
covariance matrix, in this case the 1 indicates that it is the
conjugate transpose of that matrix. The random diagonal
matrix may be determined according to the formula

e [_TP A2
TrAG!

where, T is the coherence time, P is the transmit power, Tr
is the trace function; and A, is the eigenvalues of the
transmitter covariance matrix.

BRIEF DESCRIPTION OF THE DRAWING

For a more complete understanding of the present inven-
tion, and the advantages thereof, reference is now made to
the following descriptions taken in conjunction with the
accompanying drawing, in which:

FIG. 1 is a diagram illustrating an example MIMO
communications system;
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FIG. 2 is a block diagram of an implementation of a
described embodiment; and
FIG. 3 is a flow chart of an embodiment of the disclosure.

DETAILED DESCRIPTION

The structure, manufacture and use of the presently pre-
ferred embodiments are discussed in detail below. It should
be appreciated, however, that the present invention provides
many applicable inventive concepts that can be embodied in
a wide variety of specific contexts. The specific embodi-
ments discussed are merely illustrative of specific ways to
make and use the invention, and do not limit the scope of the
invention.

FIG. 1is a diagram of a basic MIMO system. Access point
(AP) 10 is a base station including multiple antennas. As one
example, cell site 10 may be configured as a NodeB in a
UMTS cellular communication system. Cell site 10 has M
antennas 12. A particular transmission channel will use more
than one of antennas 12 to take advantage of the MIMO
transmission system. In the described embodiment, mobile
station 14 will also include N antennas 16. The following
description discusses transmissions from cell site 10 to
mobile station 14. However, the principles of this embodi-
ment are equally applicable to transmissions from mobile
station 14 to cell site 10, provided that mobile site 14
includes adequate processing capabilities to implement this
embodiment. It should also be noted that the receiver of the
MIMO transmission can also be a stationary receiver, and
need not be a mobile station.

In the following discussion, random and deterministic
matrices will be denoted by boldface and regular face upper
case letters, respectively. The mxm identity matrix will be
denoted by 1,,, and the standard O(@®) notation will be used
to imply that g,(x)=0(g,(x)) if g, (x)/g,(x)—>a as x—=>», a is
a constant.

A frequency-flat block Rayleigh fading channel in which
the signals emitted from the transmit antennas are correlated
and the signals impinging on the receiver antennas are also
correlated can be used as a preliminary model. This situation
arises in practice when the antenna elements are not suffi-
ciently spaced for their signals to be statistically indepen-
dent. Denoting the number of transmit and receive antennas
by M and N, respectively, the channel matrix can be
expressed as H=XA'?H, B"?, where AeC** and BeC™"
are the Hermitian positive semi-definite transmit and receive
covariance matrices, respectively, and H, eC**" is a random
matrix with zero-mean unit-variance i.i.d. circularly-sym-
metric complex Gaussian entries. To avoid degenerate sce-
narios, it can be assumed that both A and B are full rank, and
other cases will be alluded to as necessary.

In the block fading model, the channel assumes a statis-
tically independent realization over each block of T channel
uses and remains essentially constant within each block.
This model is realistic in perfectly interleaved frequency-
hopping systems and is useful in characterizing high mobil-
ity scenarios in current Long Term Evolution (LTE) cellular
systems in which time-frequency resource blocks are
assigned to each user during a coherence interval. In this
case, the received signal matrix can be expressed as

Y=X4'"2H,BY?+V 1)

where Xe represented the transmitted signal matrix,
and YeC™* represents the additive noise matrix; the entries
of V are i.i.d. zero mean unit variance circularly-symmetric
complex Gaussian random variables. The matrices A and B

C T<M
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are normalized so that Tr(A)=Tr(B)=1, and, assuming that
the power budget of the transmitter P, there is the following
power constraint:

E{Tr(xx"}=TP @

The matrices A and B can be estimated from the physical
properties of the propagation environment and the antenna
pattern, and can hence be assumed to be known. The
communication scenario that is considered is non-coherent,
thereby the matrix H,, in (1) is not known to either the
transmitter or the receiver.

Conditioned on X=X, the matrix Y in (1) is Gaussian
distributed with

veo(Y)=(B2® X4 2)vec(H,, +vec(V) (2.5)

where vec(@®) is the operator that stacks the columns of the
matrix argument on top of each other. Now the covariance
matrix

E{vec(Y)vech ()X} =B® XAX 1y, 3)

Hence, conditioned on X=X, the probability density func-
tion (PDF) of Y can be expressed as

exp(—vec' (V)(B@XAX' + ) vec(r)) Q)

7™ det(B @ XAX" + Ing)

pYIX =X) =

Using this expression it is straightforward to verify that for
any deterministic TxT unitary matrix @, p(®YIPX=DX).
This along with Lemma 1 in Hochwald et al. (B. M.
Hochwald and T. L. Marzetta, “Unitary space-time modu-
lation multiple-antenna communications in Rayleigh flat
fading,” IEEE Trans. Inf. Theory, vol. 46, pp. 543-564,
March 2000, which is hereby incorporated herein in its
entirety by reference) can be combined to show that the
structure of the matrix X that achieves the ergodic non-
coherent capacity of the channel in (1) can be expressed as

X=0, DU ®

Where Q, is an isotropically distributed unitary matrix
fulfilling the model of a Grassmannian manifold (See Absil
et al. Riemannian Geometry of Grassmann Manifolds with
a View on Algorithmic Computation. Acta Applicandae
Mathematicae, 80(2):199-220, 2004, http://www.cis.
upenn.edu/~cis515/Diffgeom-Gras smann.Absil.pdf, which
is hereby incorporated herein in its entirety by reference), D
is a random diagonal matrix with non-negative entries and
U, is the matrix containing the eigenvectors of A, ie.
A=U,A U

An implementation of equation (5) can be used in an
embodiment to provide ergodic capacity (or near ergodic
capacity) in a non-coherent transmission system. FIG. 2 is a
block diagram of one such embodiment. The data to be
transmitted 20 is provided to a precoder 22. A code book
based on X from equation (5) is generated in code matrix
generator 24. These codes are provided to precoder 22,
which combines the appropriate codes from the code matrix
to generate precoded symbols 26. Specific examples of
precoding for several transmission standards are described
in Kuo et al., Precoding Techniques for Digital Communi-
cation Systems (Springer Science+Business Media 2008),
which is hereby incorporated herein in its entirety by refer-
ence. Those skilled in the art will appreciate that the pre-
coder can combine matrices using any number of techniques
including matrix multiplication, which may be constrained
with objectives including the maintenance of orthogonality.
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These precoded symbols are used by transmitter 28, which
combines them with codes according to the transmission
system being used (IS-95 also conventionally referred to as
Code Division Multiple Access (CDMA), LTE, or other
transmission standard) to prepare symbols for transmission.
The transmitter then uses antenna 12 to transmit the symbols
wirelessly to mobile unit 16. FIG. 3 is a flow diagram of the
operation of the embodiment of FIG. 2. In step 101, a
covariance matrix is determined for the transmitter. In step
102, the data to be transmitted is precoded with the cova-
riance matrix and a Grassmannian matrix on a Grassman-
nian manifold as described herein. In step 104, the precoded
data is transmitted.

In the current discussion, result of Equation (5) is used as
a basis upon which an asymptotically tight expression for
the ergodic high SNR non-coherent capacity of the channel
model in (1), i.e. the capacity as P goes to infinity, is derived.

For a given power budget P in (2), let C(P) denote the
ergodic non-coherent capacity of the channel in (1). It can
then be written:

max

©
p(X), E{Tr(XX*)}<TPT(h(Y) WY X))

cPp) =

C(P) can be evaluated as P goes to infinity.
Evaluating h(YIX)

To evaluate the second term in (6) equation (3) can be
used along with the fact that, condition on X, Y, is Gaussian
distributed to write:

(Y| X) = NTlogrre + E{logdet(B @ XAX" + Iy7)} @)

= NTlogre + 21, 2. E{log{Ag; As,d7 + 1)}

where in writing (7) invokes (5) and the eigen properties of
the Kronecker product and used A, and A denote the i-th
and j-th eigenvalues of A and B, respectlvely, and d, to
denote the i-th entry of D.

As the transmit power goes to infinity, it can be seen that
(7) can be expressed as

M N
Y| X) :NT10g7re+Z Z E{log(As As;d
=1 j=1

}+01/P) ®

= NTlogre + NlogdetA + MlogdetB + NE{logdetDz} +0O(1/P)

This approximation is valid when D is full rank and its
entries scale with P. This condition will be shown to hold for
the matrix D to achieve the lower bound on the high SNR
ergodic capacity derived below when the number of transmit
antennas is less than or equal to the number of receive
antennas, i.e., M=N and the transmit power, P, is sufficiently
large. For simplicity, the remainder of this discussion will
focus on the case of M=N.

Asymptotic Bound on h(Y)

A high SNR approximation of the first term in (6) is now
used. Additionally, because the focus is on the case of M=N,
the results in section II1IB of Zheng et al. (L. Zheng and D.
N. C. Tse, “Communication on the Grassmann manifold: A
geometric approach to the noncoherent multiple-antenna
channel,” IEEE Trans. Inf. Theory, vol. 48, pp. 359-383,
February 2002, which is hereby incorporated herein in its
entirety by reference) are also used.
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As P goes to infinity, the differential entropy, h(Y), is
dominated by the differential entropy of Xa'?H, z"?. In
particular, using the results in [11] produces

W) =h(X4Y?H, BY?)+O(1/P) (8.5)

Expressing the matrix A in terms of its eigen decomposition,
and noting that H , is isotropically distributed, it can be

written that HWiU /H,, where “2» denotes equality in
distribution. Using this fact and invoking (5) yields

h(XA”zHWBIQ):h(QXDAA1/2HWB”2):h((B”2®IT)
vec(QxDA L PH,,))
Using corollary 9.6.4 from Cover et al. (T. M. Cover and
J. A., Thomas, Elements of Information Theory, New York:
Wiley, 1991, which is hereby incorporated herein in its
entirety by reference), allows

(8.75)

R((B'?® Ivec(ODAPH, ) h(QDA [ 2H, T
log detB ()]

To evaluate h(Q,DA ,"?H, ) one can follow the method-
ology in Zheng et al. for the case of M=N to express this
entropy in the coordinate system corresponding to the QR-
decomposition. (As used herein, the QR decomposition (also
called a QR factorization) is a linear algebra operation that
is a decomposition of a matrix A into a product A=QR of an
orthogonal matrix Q and an upper triangular matrix R.) In
particular, the matrix Q, DA ,**H,, can be expressed as Q,R,
where R is a random upper triangular matrix. Since Q, is
isotropically ~ distributed,  the matrix QDA '?

H, € Q,WDA,"?H, where W is an isotropically distributed
MxM unitary matrix. Now, the matrix WDA ,'?H,, can be
expressed as WR. Note that if the matrix DA /2 is full rank,
then so DA ,*?H,,. It will later be shown that this assumption
holds and use the QR decompositions to write

hOxDALPH,)~h(Qx)+h(RI+E{log J;}

where J, is the Jacobian of the transformation from Carte-
sian to QR coordinates and is given by Zheng et al,
1=, MR, 270+ Similarly,

10)

h(WDA V2H, ) =h(P)y+h(R)+E{log J>}

where J=IT,_ MR, 2D+
Substituting for h(R) from (11) into (10) yields:

an

1 1 (12)
WQxDAZH,) = DAL H,) + hQx) - h(¥) + Eflog/, / 12}

1
= W¥DAZH,,) + 1og|Gyy (CT)| + (T — M)

E{logdetH!D*A 4 H,,}

where in writing the second equality the fact that Q, and ¥
are isotropically distributed is used, whence h(Q,)-h(¥) is
equal to the logarithm of the volume of the Grassmann
manifold,

Ty —
(o= H 2 1

To obtain an upper bound on h(WDA ,*?H,), it is noted
that the covariance

E{(,;® WDA M2)vec(H, )vec (H,)1,/®

A 2Dk )=, E{wD’A Wt (13)

10

15

20

25

30

35

40

45

50

55

60

65

8

To compute the last expectation the following result is used
from Hiai et al. (F. Hiai and D. Petz, “Asymptotic freeness
almost everywhere for random matrices,” Acta. Sci. Math.
(Szeged), vol. 66, pp. 809-834, 2000) and Tulino et al. (A.
M. Tulino and S. Verd’u, “Random matrix theory and
wireless communications,” Found. Trend. Commun. Inf.
Theory, vol. 1, no. 1, pp. 1-182, 2004, which is hereby
incorporated herein in its entirety by reference).

Lemma 1:
For any isotropically distributed unitary matrix
Xm * 1
e C™, K|} = — O,

where 9,; is the Kronecker delta.

Using this result yields,

(13.5)

1
EQ¥D ALY} = —THEDH A

Whence an upper bound on h(WDA ,'?H, ) can be readily
obtained by applying Theorem 9.6.5 in Cover et al., which
yields:

ne 14
HYDA H,) < logdet T THEIDMA )], 2 a4

= leog% THED A L) 13

and equality holds if and only if WDA ,'*H,, is Gaussian and
distributed with covariance

1
MTr(E{DZ}AA RS

In other words, equality holds if and only if the entries of the
matrix are YDA ,'?H,, i.i.d. zero mean Gaussian random
variables with variance

! T 1A
I r(EAD }A4).

Upper and Lower Bounds on Capacity
Upper Bound:

To obtain an upper bound on capacity, (2) is used to bound
the right hand side of (15). In particular, leth = . . . =h, >0,
which yields,

T 16
MYDAYVH,) = leog%/\Al P 16

Notice that this bound is not achievable unless A and B{D?}
are scaled identities.
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Using (16) with (12) and (9) yields

», meT r (16.5)
(Y) = MPlog——24, P+1oglGy (€7)] +

(T — M)E{logdetH! D?A 4 H,,} + TlogdetB
Using this bound with (8) and the fact that M=N; yields

M M* TP an
C(P) =< M(7 - 1)10g7re + TIOgﬁ +

T
=2

M
M /\Al M 5 1 T
A E logA—Ai +(1 —2?)E{logdetD )+ FlodGu (€7)] +
M M
(1 - 7)E{1ogdemA H, Hi} + (1 - T)logdetB +O(1/P)

When Tz2M, C(P) can be further bounded by using Jensen’s
inequality and the fact that log det(@®) is a concave function.
Doing so, yields B{log detD?}<log det E{D?}, with equality
if and only if D is deterministic. Subject to the power
constraint in (2), the upper bound of this inequality can be
further bounded by

TP
Mlogﬁ.

Hence,

(18)
P < M(1 - g)logz

M
N 10g2 4+ Liogion €
T Og/I_A‘.+TOg| m (€ +

=2

(1 - g)logAB + (1 - g)E{logdetHWva} +0(1/P)

Lower Bound:

To obtain a lower bound on capacity, recalling that, for an
arbitrary distribution of D, the right hand side of (14) is
achievable if and only if the entries of the matrix
WDA ,?H,, are i.i.d. Gaussian distributed. This condition is
satisfied if the matrix D is deterministic and given by

D= P ALz
TrAy! A

ct. (2). Substituting this value of D in (15) yields

neTP

W¥DAY H,) = Mo
( A ) gTr/\;‘l

Thereby, at setting of D, yields

h(Y) = M*logre + loglGy (CT)] +

TP
(T — M)E{logdetH,,H)} + MTlog
TrAy!

+ TlogdetB + O(1/P)
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10

-continued

and

2 TP
A(Y | X) = MTlogr + MlogdetB + M*log

+O(1/P
TrAG! (/P

Since this setting of D is not necessarily optimal, it can be
written

0Pz {1 - L log—— + ZiogiGy (€7 + )
- T OgﬂeTr/\;1 T o8tM

(1 - g)logdetB + (1 - g)E{logdetHWva} +0(1/P)

Bounds on Gap to Capacity
Comparing (18) to (19), it can be seen that setting

TP
TrA;!

-1/2

yields a gap to capacity of:

-1

s TrA
A = (T -2M)logdetA + M"logha, + M(T - M)log i

It should be noted that when

A=0. Otherwise A is strictly greater than zero, and an upper
bound on it can be derived as follows. Let k be the condition
number of A; i.e. k=h, /M, . Hence,

A= 20
M M As; M M AAI M
(1 - 27)10gl_[‘-:1 Tt M(1 - ?)logZizl v M(1 - 7)1ogM
To obtain a bound on A, note that, because

h =z ... =k, >0, the first term in (20) is non-positive, and
the argument of the logarithm in the second term is bounded
by M,.. Using these observations, results in

M )1og,< ©en

AsM(1—7

Hence, it has been shown that the upper and lower bounds
obtained on capacity are within a gap proportional to the
logarithm of the condition number of the transmitter cova-
riance matrix, and that that gap does not depend on the SNR
or the receiver covariance matrix.
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Theorem 1

For the communication scenario described in (1) and (2),
when T=2M and M=N, the ergodic high SNR capacity C(P)
satisfies:

TPx

reTrA;!

™ CP-c
meTrAl ~ M(1-M/T) ™

(22.5)

log log

where

c= i1ogjc; () + (1 - K)1oga1et3 + (1 - K)E{logdetﬂ H}+0(/P)
T M T T e :

Furthermore, the lower bound on C(P) is achieved by input
signal matrices of the from in (5) with

e [P e
TrAy! A

Effect of Transmitter Covariance Condition Number on
Achievable Rate

The rate on the right hand side of (19) is achievable using
the strategy outlined in Theorem 1. That theorem shows that
this rate is within

M(l - g)logﬁ

of the channel capacity. To investigate the effect of increas-
ing k on this rate, derive upper and lower bounds on that rate
and it will shown that both bounds decrease with x, indi-
cating that high correlation at the transmitter can be delete-
rious to the achievable rate if the signaling strategy of
Theorem 1 were to be used.

The transmitter covariance affects the right hand side of
(19) through log TrA ,~*. Hence, upper and Iower bounds on
the achievable rate can be derived by obtaining lower and
upper bounds on log TrA ™", respectively.

Lemma 2
Any positive definite matrix A, satisfies

0 1 2 22)
log(M — 1 + &) < logTrAy <log2(M - 1)+ p +(M - 1)«

Proof: To prove the first inequality, write:

)

1 (/\AM R Ay

logTry! = log(? "
M 1

1 1
210g(/<(— +.ot+ - +1])
K K

=logM —1+k)

AAMI

To prove the second inequality write

1 A
logTrA;t = log(r(l + % +
Al Az

IOg(AAl ot Aay,
Ay

el
k41| =
Aay

(1+(M - 1)/()] < log(Z(M -+ % +(M - 1)2K]
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This inequality holds with equality when M=2 and with
strict inequality when M>2 and the eigenvalues of A are
distinct.

It can be verified that both inequalities are monotonically
increasing in k. Hence, using the result of this lemma in the
right hand side of (19), it can be seen that both the lower and
upper bounds on the rates achievable by the strategy out-
lined in Theorem 1 are monotonically decreasing with the
condition number of the transmitter covariance matrix,
which indicates that the more ill-conditioned this matrix is,
the less the rate that can be achieved with this strategy. This
result has an intuitive explanation. The signaling strategy in
Theorem 1 allocates more power to the weak eigenmodes of
the channel. Hence, when the channel matrix is ill-condi-
tioned, most of the power is allocated to that mode, thereby
affecting the power available for transmission over the
strong eigenmodes of the channel.

In the above discussion the high-SNR ergodic capacity of
spatially-correlated MIMO channels was discussed. Closed
form expressions for a lower and an upper bound on this
capacity were obtained and it was shown that difference
between these bounds is monotonically decreasing in the
condition number of the transmitter covariance matrix. In
particular, an expression for the high-SNR ergodic capacity
of the considered channel that is tight with a constant that
depends solely on the signaling dimension and the condition
number of the transmitter covariance matrix is obtained.

The foregoing embodiments are merely intended for
describing the technical solutions of the present invention
other than limiting the present invention. Although the
present invention is described in detail with reference to the
foregoing embodiments, persons of ordinary skill in the art
should understand that they may still make modifications to
the technical solutions described in the foregoing embodi-
ments or make equivalent replacements to some technical
features thereof, without departing from the scope of the
technical solutions of the embodiments of the present inven-
tion.

What is claimed is:

1. A communication node comprising:

a multiple input multiple output (MIMO) antenna array;

a precoder configured to precode a set of Grassmannian-

structured symbols according to a transmit covariance
matrix associated with the MIMO antenna array to
produce a set of Grassmannian-structured precoded
symbols; and

a transmitter coupled in-between the MIMO antenna array

and the precoder, the transmitter configured to transmit
the set of Grassmannian-structured precoded symbols
over a spatially correlated non-coherent channel
between the MIMO antenna array and a receiver.

2. The communication node as in claim 1 wherein the set
of Grassmannian-structured symbols are generated by pre-
coding input signals with a Grassmannian matrix having a
Grassmannian manifold, wherein the distribution of the
Grassmannian matrix on the Grassmannian manifold is an
isotropic distribution.

3. The communication node of claim 1 wherein the set of
Grassmannian-structured symbols are precoded in accor-
dance with the square root of the inverse of the eigenvalues
of the transmit covariance matrix.

4. The communication node of claim 1 wherein the

5 transmitter communicates with a mobile receiver configured

to receive the set of Grassmannian-structured precoded
symbols.
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5. The communication node of claim 1 where a coding
matrix X of the set of Grassmannian-structured precoded
symbols is

X=0. DU,

Where Q- is a unitary matrix isotropically distributed on
a Grassmannian manifold, D is a random diagonal
matrix with non-negative entries, and U, is a matrix
containing eigenvectors of the transmit covariance
matrix.
6. The communication node of claim 5 where the random
diagonal matrix is determined according to

e [P e
TrAy! A

Where T is a coherence time, P is a transmit power, Tr is
a trace function, and A, is a matrix of eigenvalues of
the transmit covariance matrix.

7. A communication node as in claim 1 wherein the
communication node is a base station.

8. A communication method comprising:

precoding, by a precoding device, symbols to be trans-

mitted wirelessly using a plurality of antennas by
precoding a set of Grassmannian-structured symbols
according to a transmit covariance matrix associated
with a multiple input multiple output (MIMO) antenna
array to produce a set of Grassmannian-structured
precoded symbols; and

transmitting, by a transmitter device, the set of Grass-

mannian-structured precoded symbols over a spatially
correlated non-coherent channel between the MIMO
antenna array and a receiver.

9. The communication method as in claim 8 wherein the
set of Grassmannian-structured symbols are generated by
precoding input signals with a Grassmannian matrix having
a Grassmannian manifold, wherein the distribution of the
Grassmannian matrix on the Grassmannian manifold is an
isotropic distribution.

10. The communication method of claim 8 wherein the set
of Grassmannian-structured precoded symbols are precoded
in accordance with the square root of the inverse of the
eigenvalues and the eigen vectors of the transmit covariance
matrix.

11. The communication method of claim 8 wherein the set
of Grassmannian-structured precoded symbols are transmit-
ted to a mobile receiver.

12. The communication method of claim 8 where a coding
matrix X of the set of Grassmannian-structured precoded
symbols is

X=0, DU

where Qy is a unitary matrix isotropically distributed on
a Grassmannian manifold, D is a random diagonal
matrix with non-negative entries, and U, is a matrix
containing eigenvectors of the transmit covariance
matrix.
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13. The communication method of claim 12 where the
random diagonal matrix is determined according to

e [P e
TrA;! A

where T is a coherence time, P is a transmit power, Tr is
a trace function, and A, is a matrix of eigenvalues of
the transmit covariance matrix.
14. A computer program product comprising:
a non-transitory computer readable storage medium stor-
ing programming, the programming including instruc-
tions to:
precode symbols to be transmitted wirelessly using a
plurality of antennas by precoding a set of Grass-
mannian-structured symbols according to a transmit
covariance matrix associated with a multiple input
multiple output (MIMO) antenna array to produce a
set of Grassmannian-structured precoded symbols;
and

transmit the set of Grassmannian-structured precoded
symbols over a spatially correlated non-coherent
channel between the MIMO antenna array and a
receiver.

15. The computer program product of claim 14 wherein
the set of Grassmannian-structured symbols are generated
by precoding input signals with a Grassmannian matrix
having a Grassmannian manifold, wherein the distribution
of the Grassmannian matrix on the Grassmannian manifold
is an isotropic distribution.

16. The computer program product of claim 14 wherein
the set of Grassmannian-structured precoded symbols are
precoded in accordance with the square root of the inverse
of the eigenvalues of the transmit covariance matrix.

17. The computer program product of claim 14 wherein
the transmitter communicates with a mobile receiver con-
figured to receive the set of Grassmannian-structured pre-
coded symbols.

18. The computer program product of claim 14 where a
coding matrix X of the set of Grassmannian-structured
precoded symbols is

X=0, DU

where Q is a unitary matrix isotropically distributed on
a Grassmannian manifold, D is a random diagonal
matrix with non-negative entries, and U, is a matrix
containing eigenvectors of the transmit covariance
matrix.

19. The computer program product of claim 18 where the

random diagonal matrix is determined according to

e [P e
TrA;! A

where T is a coherence time, P is a transmit power, Tr is
a trace function, and A, is a matrix of eigenvalues of
the transmit covariance matrix.

#* #* #* #* #*
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